Describing Easy Symmetries of Petri nets Compositionally

Bernard Berthomieu1,2 ...

1 CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

1 Introduction

Symmetries reduction a well know technique for fighting comb explosion in model-checking

used in different forms in various contexts ...

for time petri nets, originating from Starke ...

two phases: identifying symmetries (1) and checking equivalence (2) ...

schmidt/lola approach: (1) automatic, (2) by ...

(1) reasonably fast in e.g. lola, (2) may be slow ...

pro: (1) finds all symmetries, so great potential reduction

con: but (2) rely on approximate "minimization", sp some of the benefits of (1) lost

alternative for (1): symmetry annotations make explicit (1)'

alternative for (2): computation of representants (2)'

we present an approach combining (1)' and (2)'

(1)' by structural, compositional, description of symmetries, with local restrictions ensuring polynomial COP

(2)' relies on sorting methods.

pro: really fast, (2)' way faster than

con: not all symmetries can be expressed or handled, and they must be made explicit

justif: large PN have some structure, known by the designer, and symmetries known too.

2 describing Petri nets (structurally ?)

A basic net is a place with its connected edges and transitions, or a single transition

Compound nets are built by composition by |
expressiveness: prove that any net can be built that way

enriching the language (for convenience, same expressiveness): labels, renaming, free product ?, ...
examples (structure explicit ...)

3 compositional description of symmetries

3.1 idea

assuming subnets, each with its symmetries (computed or declared), infer symmetries on result of composition.
method, how to compute compositions of symmetries?

automorphismes et groupes résultant des compositions ? rapport avec calcul de schmidt

benefits, does it help computing generators?

expressiveness

not all automorphisms can be computed this way \((A(g_1)|A(g_2)) \subseteq A(g_1|g_2)\)
products have more symmetries than made explicit (e.g. identical components, dihedral, or pool of pools ...)

3.2 Products

Given \(N_1 :: G_1\) and \(N_2 :: G_2\), what are \(N_1 | N_2\) and \(G_1 | G_2\)?
Define \(N_1 | N_2\); semantics in terms of lts
Define \(G_1 | G_2\)
 semantics: \(G_1 | G_2\) should capture all symmetries of \(G_1\) and \(G_2\), but no more.
 computation of generators
 soundness
 “completness” (in above sense).
expressiveness: clearly, there can be more symmetries in \(N_1 | N_2\) that expressed in \(G_1 | G_2\), even if \(G_i\) captures all symmetries of \(N_i\)

condition of starke on transitions
note: compositions preserve isomorphism of components
algorithmics: not polynomial in general, next section concentrate on restrictions ensuring polynomial COP
4 easy symmetries, compositional description of

4.1 Symmetries having polynomial COP (cf. Donaldson)

Pool, Ring, disjoint product, wreath product, ++

4.2 Specifying symmetries – symmetry annotations

Pool(n,N::G) and Ring (n,N::G) and compositions of

semantics: what is it meant by Pool or Ring ?
Pool (resp. Ring): symmetries are those resulting by process swaps (resp. circular process permutations)

Computation of generators:

Pool/Ring (n,N::G):
if G = Ident:
 generators from isomorphisms ?
 checking that they indeed define a symmetric (resp. cyclic) group
 conditions for “easyness”
if G ≠ Ident :
 genarators ?
 semantics ?

4.3 Easyness conditions

“easy” ⇔ COP is polynomial
1. When does a Pool or Ring describe an “easy” symmetry ?
 condition of “moves” of components of a pool or ring. If satisfied, then lexmin in orbit can be computed by sorting component states
 condition in untimed and timed cases
 basic components partition places ⇒ trivially easy in untimed
 if timed:
2. products: when is result a disjoint product ?
 condition in untimed and timed cases (based on moves and computation of generators of the product in prev. section)
3. embedded symmetries:
 Pool/ring of Pool/Ring: when is result a wreath product ?
 condition in untimed and timed cases
4.4 Extensions

Generalizations: Cube ? Dihedral ? Open groups with adhoc COP ?
Q: reconstructing “easy” group structure from computed symmetries “ la lola” ?

5 computing canonical state representants

adapt standard result to petri nets
what if net timed (in discrete time)
 if untimed: “moved” condition applies to places only
 if times then “moved” condition applied to transitions as well sine the
time information is captured by transitions
computing experiments
examples
 comparison with lola and ina (and Juntila ?)
what if net timed (in discrete time)

 what if disjointness conditions between pool members not satisfied ? We
don’t obtain canonical forms, but do we obtain minimal forms anyway ? (sound
? termination ?)

6 conclusion

orthogonal arguments, pro/con of each
merging both approaches

identifying easy symmetries in lola style treatment whenever possible
???
A States

A.1 Of Petri nets

\[P = \{p_1, \ldots, p_n\} \] is the set of places, assumed ordered.

\[T = \{t_1, \ldots, t_m\} \] is the set of transitions, assumed ordered.

\[s = m_1, \ldots, m_n \]
where \(m_i \) is the marking of place \(p_i \)

states can be ordered by \(\leq \) = lex ordering on \(\mathbb{N}^n \)

A.2 Of Time Petri nets

In discrete time – clocks

\[s = m_1, \ldots, m_n, k_1, \ldots, k_m \]
where \(m_i \) is the marking of place \(p_i \)
and \(k_j \) is the clock value of transition \(t_j \) (\(\perp \) if not enabled, conventionally)

let \(\mathcal{N} = \mathbb{N} \cup \{\perp\} \) and assume \((\forall x \in \mathbb{N})(\perp \leq x) \)
states can be ordered by \(\leq \) = lex ordering on \(\mathcal{N}^{n+m} \)
or by colex ordering on \(\mathcal{N}^n \times \mathcal{N}^m \), seeing states as pairs
\((m_1, \ldots, m_n), (k_1, \ldots, k_m) \)

In dense time – DBM

DBM encodes system:
\[\alpha_i \leq t_i \leq \beta_i \]
\[t_i - t_j \leq \gamma_{i,j} \]

by:
\[d_{0,0} = 0 \ (\text{conventionally}) \]
\[d_{0,i} = -\alpha_i \ (i \neq 0) \]
\[d_{i,0} = \beta_i \ (i \neq 0) \]
\[d_{i,j} = \gamma_{i,j} \ (i,j \neq 0, i \neq j, \infty \text{ added }...) \]

Then:
\[s = m_1, \ldots, m_n, d_{0,0}, \ldots, d_{0,m}, \ldots, d_{m,0}, \ldots, d_{m,m} \]
== linearized DBM. Note: more state entries than transitions

Explain effects of a permutation on the state.
E.g. swapping transitions \(i \) and \(j \) in the dbm \((i, j \neq 0) \):
\[d_{i,j} \leftrightarrow d_{j,i} \]
\[(\forall k)(d_{i,k} \leftrightarrow d_{j,k}) \]
\[(\forall k)(d_{k,i} \leftrightarrow d_{k,j}) \]

ordering states: colex on \(\mathcal{N}^n \times \mathcal{N}^{(m+1)^2} \)
In dense time – ranks

\[s = m_1, \ldots, m_n, r_1, \ldots, r_m \]

where \(m_i \) is the marking of place \(p_i \)

and \(r_j \) is the rank of variable (transition) \(t_j \) in the DBM (⊥ if not enabled)

ordering states: as for clocks
B Register

B.1 Model
We wish to model a register with values in range \{1, \ldots, n\}
One place per value: 1, \ldots, n
transition \(i \rightarrow j\) changes value of register from \(i\) to \(j\)
Initial state is established non-deterministically using a place \(0\) and transitions \(0 \rightarrow i\) from place \(0\) to place \(i\)

B.2 symmetries
process swaps
symmetries: prove that isomorphic to \(S_n\)
observe that, if seen as a TPN, swapping processes \(i\) and \(j\) modifies the states of other processes as well ...
In terms of cycles, this can be formulated as ...
Show that canonization by sorting, using clocks or ranks, would not necessarily lead to the canonical state (there are local minima)
How to handle such symmetries? restrictions to ensure that process swaps are “legal”

there are several isomorphisms between components \(i\) and \(j\), actually ...

B.3 in \textit{tpn+}
Q: how to express these symmetries in \textit{tpn+sym} (using renaming?)
Pool(\textit{n,R,N}) ?
condition on \(R\) ensuring symmetry is a \textit{Sym}?

renaming \(R \%\) scalarsets