No poker face for computers

If a machine contains secret data (bank code, secret communication key...), one can learn about them as soon as they influence the outputs of a program executed on this machine. Preventing the existence of critical leaks is the goal of cryptography.

But computers are like us: thinking produces unintentional behaviours (computation time, temperature, power consumption...) that may reveal sensible information! Exploiting these behaviours is called a side-channel attack.

The way of efficient mind reading

Aggregation

The important question is whether sensible knowledge can be aggregated across multiple observations: how many “questions” (and which ones) should be asked to the target to guess its secret? (from the observation of its reactions)

Decomposition

In general, secrets are too complex to be extractable at once. To obtain realistic attacks, a divide-and-conquer approach is usually required: one isolates, within the whole observation, the influence of small parts of the secret to recover it little by little.

We formalise side-channel attacks using execution time (with noise in observations). When a program can be decomposed into n independent blocks, we prove that:

1. one can guess all leakable information from a number of well-chosen questions proportional to n...
2. ... and that $O(n \ln \frac{n}{\epsilon})$ random questions are actually sufficient (with probability $1 - \epsilon$).

What we bring

Boris Köpf and Itsaka Rakotonirina, Systematic Design of Timing Attacks, 2016-2017